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Abstract. We mnsider the boundary quantum inverse scamring method established by 
Sklyanin. The Gaudin magnet with boundary is diagonalized by taking a quasiclassical limit of 
the inhomogeneous lattice Using the method proposed by Babujian, fhe i n t e d  representation 
for the solution of the 8-type KnizhniL-Zamolodchikov equation is explicitly constmcted. 

1. Introduction 

The algebraic Bethe ansatz ( B A )  method for the open-boundary spin chain is considered 
to construct the integral solution of the Knizhnik-Zamolodchikov type dfferential equation. 
This technique was first studied by Sklyanin [l] to treat the spin-l/Z XXZ spin chain, and 
has been widely applied to other systems [ 2 4 .  Although the open-boundary spin chain 
was solved in [SI by use of the coordinate Bethe ansatz method, the ABA approach reveals 
the quantum group structure of this system [6,7]. In this formulation both the R-matrix and 
K-matrix play crucial roles. These matrices are solutions of the Yang-Eaxter and reflection 
equations, respectively. We only treat the rational and the trigonometric solution of these 
equations; the elliptic K-matrix as a general solution of the reflection equation has been 
investigated [8,9]. 

Ln the first part of this paper we construct the eigenstate of the boundary Gaudin magnet 
by taking a quasi-classical limit of the transfer matrix for the inhomogeneous open spin 
chain. The Gaudin magnet has its origins in [lo, 111 as an integrable spin system with 
long-range interaction. The Hamiltonian is given as a solution of the classical Yang-Baxter 
equation [12,13], and is closely connected with the notion of the separation of variables 
[14-171. The 'functional Bethe ansatz' method was also applied to the boundary Gaudin 
magnet [18]. 

In the second part, the Knizhnik-Zamolodchikov type differential equation is studied. 
Recently, an interesting structure of the Gaudin magnet has been revealed; the integral 
solution of the Knizhnik-Zamolodchikov (KZ) equation can be obtained in terms of the 
Bethe eigenstate of the Gaudin magnet [19-22]. The KZ equation is a set of differential 
equations which is satisfied by the correlation functions of the wzNw model 1231. The 
integral formula for the solution of the Kz equation has been derived based either on the 
themy of the hypergeometric function [%,25], or on the Waktmoto construction 1261. The 
relationship between the Gaudin magnet and the KZ equation gives an insight into the 
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structure of the integral solution. Making use of this technique for the Gaudin magnet 
with boundary, we shall construct the integral representation for solutions of the B-type KZ 
equation. 

This paper is organized as follows. In section 2 the ABA method for the open-boundary 
spin chain is reviewed. The transfer matrix for su(2) spin-112 XXZ chain is constructed in 
terms of the R-matrix and the K-matrix. We show in section 3 that the Hamiltonian of the 
boundary Gaudin magnet appears by taking a quasi-classical limit of the transfer matrix; 
this completes the diagonalization of the boundary Gaudin magnet. Based on the 'off-shell 
Bethe ansatz method' of Babujian, the explicit integral solution for the B-type KZ equation 
is obtained in section 4. Section 5 is devoted to a summary and discussion. 

In the following we use the Pauli spin matrices as a two-dimensional representation for 
the su(2) Lie algebra: 

The creation-annihilation operators U* are dso used: 

We remark that these spin operators act on the Hilbert space V = e'. 

2. The boundary quantum inverse scattering method 

We briefly review the boundary quantum inverse scattering method (QISM) of Sklyanin [ 141. 
The basic notion is the quantum R-matrix satisfying the Yang-Baxter equation (YBE) 

u * = $ ( u ^ i i u y ) .  ( 1 .a 

Figrve 1. The Ymg-Banter equation. 

Here ,.i signifies the matrix on V @ V (3 cting on the jth ant spaces and as an 
identity on the other space. The variables U and U are called the spectral parameters. As a 
solution of YBE (2.1), we use the R-mamix for the six-vertex model 127,281: 

where 

In the rational limit, these functions reduce to 
U D c(u)  = - 

U + ?  U + V  
b(u) = - 
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and the R-matrix is simply written as R(u) = (U + q P ) / ( u  + q).  We note that the R-matrix 
depends not only on the spectral parameter U but on the 'deformation parameter' q. 

The R-matrix defined in (2.2) has the following properties. 
(i) regularity: 

R(u = 0) = P (2.4) 

R(u)l,,o = 1 (2.5) 

R(u)R(-u) = 1. (2.6) 
Using the R-matrix satisfying YBE (2.1) we can define the monodromy matrix T ( u )  for 

(ii) the quasi-classical condition: 

(iii) unitarity: 

the inhomogeneous N-site spin chain [291 (figure 2) by 

Figure 2. The monodromy matrix T(u)  

Here the operator matrix elements A@), E @ ) ,  C(u), and D(u) act on the full Hilbert 
space V@". Due to the additive property of the spectral parameters, the YBE also holds for 
the inhomogeneous lattice and we have 

RIZ(U - u)(T(u) @ 1)(1@ ?'(U)) = (1 @ T(u)) (T(u)  @ 1)Rlz(u - U). (2.8) 
This relation gives us the commutation relations between the operator matrix elements A@),  
B(u),  C(u), and D(u). Some of them are given as 

[B(u) ,  N U ) ]  = 0 (2.9a) 

To construct the eigenstates of our system, we use the vacuum state IQ): 

In)=( :,),@...@( :,) N (2.10) 

It is easy to check that the vacuum state 1'2) is the eigenstate of operators A(u) and D(u),  
and annihilated by C(u): 

A(u)lQ) = In) (2.1 la) 

C(U)lG) = 0. 

(2.116) 

(2.llc) 



so00 K Hikami 

We note that the Bethe state, a sum of spin wave 1301, can be generated by operator B(u) 
acting on the vacuum state IQ). 

To formulate the spin chain with open boundary, we further introduce the so-called 
'boundary K-matrices' which satisfy the reflection equations (figure 3): 

RZ(U - v ) (K- (u )  @ ~)RIz (u  + u)(I 8 K-(u) )  
= (1 @ K-(U))R~I(U + u)(K-(u) 8 ~ ) R I z ( u  - U) (2.12) 

Rn(-U + u)(K:(u)  @ l)Rlz(-u - U  -211)(1@ K:(u))  
= (1 8 K:(u))RzI(-u - U - 2q)(K:(u) 8 l)R~z(-u +U). (2.13) 

Figure 3. The reflection equation. 

For the R-matrix in (2.2) the reflection equations have been solved as 

K - ( u )  = K ( u ,  t-) (2.14) 
K + ( u )  = K ( u  + 11, t+) 

where matrix K ( u ,  5) i s  diagonal [31]: 
(2.15) 

(2.16) 

With the K-matrices satisfying the reflection equation, we can define the Yang-Baxter 
operator U ( u )  as 

(2.17) 

where the operator T ( u )  includes the inhomogeneity { z j )  (2.7). Note that the operators 
A(u) - D(u) also act on the Hilbert space V e N .  It is easy to check that the operator U ( u )  
satisfies the boundary YBE: 

(2.18) 
The bansfer matrix for the open-boundary problem is defined with the Yang-Baxter operator 
U @ )  and the reflection matrix K + ( u )  as (figure 4) 

t ( ~ )  = TIO K+(u)U(u).  (2.19) 
This transfer matrix f(u) forms a one-parameter commuting family 

[ t ( u ) ,  t(u)l  = 0 (2.20) 
and the Hamiltonian of the inhomogeneous XXZ spin chain with open boundary is given 
bY 

du (2.21) 
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Figure 4. The transfer mauix f (u )  for the open-boundary spin chain. 

Now the problem is to diagonalize the transfer matrix t ( u )  (2.19). The boundary 
YBE (2.18) can be rewritten in terms of the operator matrix elements, Ab),  B(u), C(u), 
and 'D(u): 

(2.22b) 

3 ( u )  = D(u) sh(2u + q )  - A(u)shq. (2.23) 

The commutation relations (2.22~) reduce to the forms 

A(u)B(u) = sh(u + U) sh(u - U - q )  sh q sh(2u) 
B(u)A(u) B(')A(u) + sh(u - U) sh(2u + q )  sh(u + U + q )  sh(u - U) 

- sh 7 B(u)3 (u)  @.%a) 
sh(u + U + q )  sh(2u + 0) 

sh(u - U - q )  sh(u + U + q) 

sh q sh(2u) sh(2u + 27) 
'sh(2u + 7) sh(u + U + q )  

B(u)i%) 
- sh q sh(2u + Zq) 

B(u)D(u) - sh(2u + q )  sh(u - U) 
B(u)A(v). (2.%b) 

Note the difference of the operator algebra between (2.9~) and (2.24~) and note that the 
transfer mamx t(u) in (2.19) is written in terms of operators A(u) and c(u) as 

3(u)B(u)  = 
sh(u - U) sh(u + U + q )  

(2.25) 
+ 7 - 5+) - 

W U ) .  
W Z u  + Zq)sh(u + 5+)A(u) - f (U) = 

sh(2u + q) sh(2u + q) 

Let us see the action of the operators A(u), C(u), and 3 ( u )  for the vacuum state 
IQ) (2.10). The property of the monodromy matrix (2.7) is useful: 

T(u)oYT'(u - q)oy = qdetT(u) (2.26) 



5002 K Hikum' 

where qdet means the quantum-determinant 1321, 

qdet T(u) = A(u)D(u - q )  - E(u)C(u - V )  

D(u)A(u - 7) - C(U)B(U - q )  
= A(u - ?)D(U)  - C(U - ~ ) B ( u )  
= D(u - ~ ) A ( u )  - B(u - ~ ) C ( U ) .  

Identity (2.26) can be checked by using the commutation relations (2.8). With this property 
and (2.114 we can see that the vacuum state IQ) is also the eigenstate of operators d(u)  
and @ U )  and annihilated by C(u): 

(2.27~) 
(2.27b) 
(2.27~) 

Here we have defined the eigenvalue functions a(u) and &(U) as 

a(u) = sh(u + e-) (2.28) 

(2.29) 

We shall diagonalize the kansfer matrix t (u)  (2.25) for the open-boundary spin chain 
in terms of the Bethe state 

(2.30) 

Using the commutation relations (2.24~) between operators d(u),  B(u) and '@U), we obtain 

t (u)o(u) = A ( u ) Y ( u ) + X  Fa*&). (2.31) 

Here the functions h ( u )  and F, are the sscalled 'wanted' and 'unwanted' terms, 
respectively, and have the forms 

M 

==I 

sh(2u + 2q) sh q 
X 

sh(2~u + q)sh(u - U,) sh(u + U, + V )  
(2.33) 

(2.34) 
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Relation (2.31) shows that the Bethe state *(U) is an eigenstate of the transfer matrix f(u) 
under the condition F, 0 (U = 1 ,  . . . , M), i.e. 

(2.35) 
0 corresponds to the Bethe ansatz equation (Em) for the spin-1/2 This equation with zt 

XXZ spin chain with boundary derived in [ I .  51. 

3. The Gaudin magnet 

We show that the Gaudin magnet with boundary can be derived from identity (2.31). The 
Gaudin magnet introduced in [IO] was given by taking the quasi-classical limit q + 0 of the 
transfer matrix Tr T ( u )  for the inhomogeneous spin chain [13]. This fact indicates that the 
Hamiltonian is written in terms of the solution of the classical YBE. In our open-boundary 
Gaudin magnet we require the constraint for the parameters I+: 

t+ = -6- = t .  (3.1) 
Due to the quasi-classical condition (2.5), we have the power series expansion around the 
point 7 = 0 for each term in (2.31): 

(3.2) 
- 

2 
t ( U  = zj) = Sh(zj + e )  Sh(Zj - I ) (1+ 7Hj + O(7 )) 

(3.3) 

(3.4) 

where the ‘Hamiltonian’ Hj, ‘energy’ Ej, and ‘unwanted factor’ fu are calculated as 

(3.7) 

We remark that due to constraint (3.1) the first term in t (u  = zj) becomes a c-number. This 
proves the integrability of the Hamiltonian Hj, 

(3.8) [Hj, Hk] = O  for j = 1,. . . , N 
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which is obtained from the commutativity of the transfer matrix (2.20). The Bethe states, 
0 and Ye, can also be expanded as 

(3.9) 
(3.10) 

Y(u) = sM@ + O ( i l M + ' )  

W z j )  = tl"-'(-sh(zj +<))U;& + O(V") 
with 

(3.11) 

When we combine the terms proportional to q'+' in (2.31), we obtain the so-called 
'off-shell Bethe ansatz' equation 

This equation suggests that the Bethe state 4 (3.11) is an eigenstate of the Gaudin's 
Hamiltonian Hj .  iff a set of rapidities {ue] is set to satisfy fo = 0 (a! = 1, ..., M), 
i.e. 

We have derived the eigenstate and the energy of the XXZtype Gaudin magnet with 
boundary. We note that in the rational limit the Hamiltonian Hj (3.5) reduces to the form 

where P j k  is a permutation operator in'spin space: 

4. The Koizhnik-Zamolodchikov equation 

We consider the =-type differential equation 

Vj@=O f o r j = 1 , 2  ,_.., N. 

(3.16) 

(4.1) 
where the differential operator Vj is defined by use of Gaudin's Hamiltonian Hj (3.5) (and 
its rational limit (3.15)): 

We remark that K is an arbitrary parameter. The integrable condition for a set of the Kz-type 
differential operators Vj, 

(4.3) [VI, Vk] = 0 for j ,  k = I ,  ..., N 
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is satisfied for the case 
aH, affk L=-. 
azk azj 

Then the parameter 5 is solved as 

6 -0. (4.4) 

In this case the differential operator Vi coincides with the B-type KZ differential operator 
considered in 1331. Gaudin’s Hamiltonians Hj include an arbitrary parameter (, which 
disappears in the family of the mutually commuting B-type Kz differential operators Vj. 
We rewrite the explicit forms of the operator If, and the Bethe state Q in the timit 5 + 0 
as 

(4.6) 

Following the idea of [19,21], we define the hypergeometric function ~ ( z ,  U) by a set 
of differential equations 

~2 = Ejx for j =  I ,  ..., N (4.7u) 
azi 
a i  
a K - =  f m x  fo ra r=I ,  ..., M. 

The integrability of these differential equations follows from the conditions 

In fact, it is straightforward to solve the differential equations ( 4 . 7 ~ ) ;  its solution X ( L  U) is 
a hypergeometric function 

M 

U 4  

x n ( s h ( ~ .  - up) sh(u, + vp))*/“. (4.8) 

One can introduce the wavefunction @ ( z )  in the integrated form, which has a 
hypergeometric kernel, as 

(4.9) 

The integration path C is taken over a closed contour in the Riemann surface such that the 
integrand resumes its initial value after U, has described it. The integral function $(z )  is 
in fact a solution of the B-type equation (4.1): 

vj @ ( z )  = 0. 
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To prove (4.1) we use the fact that the Bethe state @ ( z ,  U) (4.6) satisfies 

where & is defined in (3.12) with the condition c 
not depend on U,. Then equality (4.1) can be proved simply as 

0. One sees that the function does 

=Hi$. 

5. Discussion 

We have constructed the integral representation for the solution of the B-type KZ equation. 
We summarize our result for the rational case. In this case the integrable condition for the 
=-type differential operators, [Vj, v k ]  = 0, is satisfied for two cases: ( = 0 and 6 = CO. 
The first case gives the B-type KZ equation 

- 
where P j k  u;u;P,k. The integral solution can be explicitly written as 

On the other hand, one can see that the second case, c = CO, corresponds to the A-type KZ 
equation 

and that the integral representation for the solution is given by 
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From this fact, one can conclude that the rational 'off-shell Bethe ansatz equation' (3.13) 
for the boundary Gaudin magnet intertwines the A- and B-type Kz equations. 

We only give the integral representation for the solution of the spin-If2 B-type ~z 
equation. The generalization to the su(n) B-type Kz equation should be done from the view 
point of the Gaudin magnet with boundary [34]. 
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